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X-ray scattering of thin liquid films: Beyond the harmonic approximation
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We calculate the x-ray scattering from coupled capillary fluctuations of thin liquid films, taking into account
an asymmetric interfacial interaction potential. Harmonic expansion of the potential around its minimum
produces the well-known Kiessig fringes in both specular reflectivity and longitudinal diffuse scattering. The
addition of a cubic term to the expansion, representing the asymmetry, leads toqz-dependent changes of the
modulation period of the Kiessig fringes. The cubic term produces a relative phase shift between the interfer-
ence fringes of the specular reflectivity and the off-specular longitudinal diffuse scattering. It is suggested that
these effects may be used to estimate, via x-ray scattering, the interfacial potential of thin liquid films.
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I. INTRODUCTION

Thin liquid films are of interest for practical, as well a
theoretical, reasons. They are very important in many te
nological and biological processes such as flotation, tert
oil recovery, biological cell interaction and fusion, spreadi
of fluids in coating, and other similar processes involvi
moving contact lines, selective etching, and forming and p
tecting chips and microsensors in the microelectronics ind
try, among others@1#. The thermodynamics of the films i
determined by the interfacial interactions@2#. A model for
the free-energyF ~per unit area! of a film of thicknessl is
F( l )5g11g21DG( l ), whereg j ( j 51,2) are the interfacia
tensions of the two interfacial boundaries of the film@3#. For
largel, DG( l ) tends toward zero. The interfacial potential
excess interfacial free energyDG( l ) can often be approxi-
mated as consisting of a short-range force and a long-ra
van der Waals interaction, written as@4,5#

DG~ l !5Spe2 l /L2A/12p l 2, ~1.1!

whereSp is the amplitude of the short-range interaction,A is
an effective Hamaker constant~Fig. 1!. The first term in Eq.
~1.1! models a short-range interaction with decay lengthL
@6#, and the second term is the van der Waals interac
between two planar interfaces, separated by a distancel. In
some cases it is necessary to add a higher-order term pro
tional to l 23 to the van der Waals interaction@7#. Different
approaches have been used to study the interfacial pote
The disjoining pressure,P5]DG/] l , can be measured as
function of thickness of the films@2,8–10#. This is practical
for free-standing liquid films and for films confined betwe
two solid surfaces. Ellipsometry, contact angle, and adso
tion measurements have been used to study the wettin
thin liquid films on both solid and liquid substrates~for a
review, see@11#!. X-ray studies have measured the intera
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tion of thin films on top of solid surfaces@12,13#, and of thin
liquid films on top of liquid subphases@14#.

Numerous x-ray scattering measurements have dem
strated the suitability of capillary wave theory to descri
fluctuations of liquid interfaces and their interactio
@13–17#. For example, for a complete wetting layer on
solid surface, the thermal fluctuations on the surface are c
fined by the substrate via a long-range interaction. By ca
fully measuring the confinement as a function of thickne
one can estimate the Hamaker constant of the system@12#.
We recently used x-ray scattering and interfacial tens
measurements to study the interfacial potential in thin liq
films on top of a liquid subphase@14#. In the present work
we calculate, via functional integrals, the x-ray scatter
from coupled capillary fluctuations of thin liquid films, tak
ing into account the asymmetric feature of the profile of t
interfacial interaction potential. It is shown that the interfe
ence terms of the Kiessig fringes of both the specular refl
tivity and the longitudinal diffuse scattering areqz depen-
dent. We demonstrate that there is a relative phase s
between the interference fringes of the specular reflecti
and the off-specular longitudinal diffuse scattering. This m
provide a useful experimental signature for determining
asymmetric shape of the interfacial interaction potential.

The mean thickness,l m , of a partial wetting layer is kep
constant by the disjoining pressure, which acts as the res

FIG. 1. An example of the interfacial potential calculated f
Sp518.831023 J/m2, A58.0310223 J, andL50.295 nm. For
this potential, one can calculate the coupling parameterB51.66
31011 J/m4, the phase shift parameterC56.7231020 J/m5, and the
film thicknessl m54.08 nm.
©2002 The American Physical Society08-1
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ing force to thermal fluctuations. The first derivative
DG( l ) vanishes at this thickness. The interplay between
short- and long-range interactions creates a strong dynam
coupling between the capillary waves on the two interfac
The second derivative ofDG( l ) measures the strength of th
coupling. If one expands the potential to second order,
correlation functions of the capillary waves can be eas
calculated by Gaussian functional integration@14,18#. In this
approximation, the shape of the potential near its minim
is presumably symmetric. However, the real interaction
tential is expected to be asymmetric. By expandingDG( l ) to
third order, we shall show that the asymmetry leads t
qz-dependent variation of the modulation period of the Kie
sig fringes.

II. THEORY

A. X-ray scattering of thin liquid films

Figure 2 sketches the x-ray scattering geometry from
thin liquid film. The scattering function, which is propo
tional to the observed intensity at point (qi ,qz) in reciprocal
space, can be expressed as@19,20#

S~qi ,qz!5 (
j 51,2

Dr j
2

qz
2 E d2r ^eiqz[ j j (r )2j j (0)]&eiq ir

1
Dr1Dr2

qz
2 E d2r @eiqzl m^eiqz[ j1(r )2j2(0)]&

1c.c.#eiq ir , ~2.1!

whereDr j is the difference in electron density across int
face j; j j (r ) is the local interfacial height of the sharp inte
face above the mean interfacial planej; r is the displacemen
between two points on the interfaces;^•••& represents the
canonical average; and c.c. refers to the complex conjug
In the literature, it is generally assumed that the fluctuati
satisfy a Gaussian distribution@19#. Thus, the correlation
functions~described below! are all real. We will show in the
next section that this corresponds to the assumption tha
potential in Eq.~1.1! is parabolic near its minimum. If one
goes a step further to take into account the cubic term,
cross-correlation function is complex.

When qi50, one measures the reflectivity of the th
films. This is realized by scanning the incident angleu i and
the exit angleue simultaneously while keepingu i5ue @21#.
The period of the interference fringes is determined by

FIG. 2. ~a! Geometry of x-ray scattering from a thin film.~b!
Three scanning modes described in the text. Thick vertical l
specular reflectivity. Dashed lines: longitudinal diffuse scatteri
Solid curve: transverse diffuse scattering.
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film thicknessl m , namely, by cos(qzlm). If qiÞ0, one mea-
sures diffuse scattering from the interfacial fluctuations
thin films. This can be realized in several ways~see Fig. 2!.
~i! Longitudinal diffuse scattering measured either by sc
ning u i andue simultaneously while keepingu i5ue1Du ~as
shown in Fig. 2!, or by scanningqz with a constant offset in
qi . If the capillary wave fluctuations of the two interface
are correlated, one measures interference fringes as a f
tion of qz , similar to that in the specular reflectivity.~ii !
Transverse diffuse scattering measured by scanningu i or ue
alone while keepingue or u i constant~experimentally, this is
convenient, though not exactly transverse to the specula
flectivity!. The shape of the transverse diffuse scattering
tensity is determined by the spectra of the two interfac
capillary waves, as well as by cross-correlations in the fl
tuations between the two interfaces of the film.

B. The correlation functions

The correlation functions are determined by an analysis
the capillary-wave Hamiltonian. In this model, the interfac
width is the result of capillary-wave roughening of a sha
interface. The range inq space of our previously reporte
experiment does not justify the use of more complica
models of the interfaces@14,17#. Here, we modify the stan
dard capillary-wave Hamiltonian to account for the interf
cial interaction@14#. A Taylor expansion about the minimum
l m of the excess interfacial free energyDG( l ) ~see Fig. 1!
yields DG( l )'2A1 1

2 B( l 2 l m)22 1
6 C( l 2 l m)3 ~note that

]DG/] l 50 at the minimum!. Adding the energy of therma
fluctuations to the free energy, one has the Hamiltonian
the system per unit area,

Htotal5
1

A0
E d2r $g1@11 1

2 ~¹j1!2#1g2@11 1
2 ~¹j2!2#

1b~j12j2!22c~j12j2!3%, ~2.2!

whereb5B/2, c5C/6, A0 is the interfacial area, andg i ( i
51,2) is the interfacial tension of interfacei. Here, only the
local interaction of the interfaces has been taken into acco
~the Derjaguin approximation@22,23#!. It is a good approxi-
mation whenqi,1/l m @23#, which is practically satisfied in
our reported x-ray experiment@14#. Also, we have ignored
the effect of gravitation, which can be accounted for by
troducing a long wavelength cutoff@18,24#. Substitutingh
5j12j2 andz5g1j11g2j2, Eq. ~2.2! is rewritten as

Htotal5
1

A0
E d2r $a8~¹z!21a~¹h!21bh22ch3%,

~2.3!

wherea851/(2g112g2) and a5g1g2 /(2g112g2). Since
j j is the local height or fluctuation of interfacej above the
mean position of interfacej, h is the difference in the fluc-
tuations of the two interfaces. If the local thickness of t
film remains constant throughout the film, thenh50. Now
the Hamiltonian consists of two parts that are independen
each other. Therefore, the correlation functions take
forms

:
.

8-2
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X-RAY SCATTERING OF THIN LIQUID FILMS: . . . PHYSICAL REVIEW E 65 061608
^exp$ iqz@j1(r 1)2j1(r 2)] %&

5 K expH iqzS z(r 1)2z(r 2)

g11g2
D J L

3 K expH iqz S g2

g11g2
D [h(r 1)2h(r 2)] J L ,

~2.4a!

^exp$ iqz[ j2(r 1)2j2(r 2)] %&

5 K expH iqz S z(r 1)2z(r 2)

g11g2
D J L

3 K expH 2 iqz S g1

g11g2
[h(r 1)2h(r 2)] D J L ,

~2.4b!

^exp$ iqz[ j1(r 1)2j2(r 2)] %&

5 K expH iqz S z(r 1)2z(r 2)

g11g2
D J L

3 K expH iqz S g2h(r 1)1g1h(r 2)

g11g2
D J L .

~2.4c!

The first parts on the right-hand sides of Eqs.~2.4! are real
functions and will be considered in the next section. To c
culate the second parts on the right-hand sides of Eqs.~2.4!,
we consider the Hamiltonian

H5E d2r $a~¹h!21bh22ch3%, ~2.5!

and denote it asH0 whenc50. The technique of functiona
integration, as used in field theory, allows us to calculate
correlation functions in Eqs.~2.4! when c is small and the
termch3 is treated perturbatively. Following Zinn-Justin, w
consider the Gaussian functional integral@25#

Z~J!5E @dh#ebc*d2rh3
e2(1/2)hKh1Jh, ~2.6!

where the kernel K(r ,w)5(22ab¹212bb)d2(r 2w),
with b51/kBT, hKh5*d2rh(r )K(r ,w)h(w)d2w, andJh
5*d2rJ(r )h(r ). Using the property of a functional deriva
tive (d/dJ)eJh5heJh, we have

Z~J!5ebc*d2r (d/dJ)3E @dh#e2(1/2)hKh1Jh

'F11bcE d2r S d

dJD 3Ge(1/2)JJJ, ~2.7!

whereJ(r ,w) is the inverse kernel that takes the form@25#

J~r ,w!5E
2`

` d2p

~2p!2

eip(r 2w)

2abp212bb
, ~2.8!
06160
l-

e

and satisfies*d2vJ(r ,v)K(v,w)5d2(r 2w). Note that
JJJ5*d2rd2wJ(r )J(r ,w)J(w). Also,

K expH iqz S g1h(r 2)1g2h(r 1)

g11g2
D J L 5eÔZ~J!uJ50 , ~2.9!

with the operator

Ô5
iqz

g11g2
S g2

d

dJ~r 1!
1g1

d

dJ~r 2! D . ~2.10!

The integrand in Eq.~2.7! is

S d

dJD 3

e1/2 JJJ53J~r ,r !e(1/2)JJJ~ 1
2 JJ1 1

2 JJ!

1e(1/2)JJJ~ 1
2 JJ1 1

2 JJ!3, ~2.11!

where the conventionsJJ5*d2wJ(r ,w)J(w) and JJ
5*d2wJ(w)J(w,r ) have been used. The first term leads
an increase in the film thickness ofD l 53cJ(0,0)/4b, simi-
lar to the thermal expansion of a crystal that results fr
anharmonic interactions. In the present case, the abso
value of the film thickness is not a direct experimental s
nature for the presence of anharmonic interactions beca
other aspects of the interaction can modify the thickness.
example, adding a term such as*d2r3cJ(0,0)h(r ) to the
Hamiltonian would result in the same effect. Here, we foc
our attention on the second term in Eq.~2.11!, which leads to
an experimental signature of the anharmonic term. Apply
the operatoreÔ to this term, we have

eÔ~ 1
2 JJ1 1

2 JJ!3e(1/2)JJJuJ50

5
Ô3~ 1

2 JJ1 1
2 JJ!3

6
U

J50

eÔe(1/2)JJJuJ50 .

~2.12!

Combining this with Eqs.~2.7! and ~2.9!, we have

K expH iqz S g1h(r 2)1g2h(r 1)

g11g2
D J L

5S 12
iqz

3bc

8~g11g2!3E d2r $g2@J~r ,r 1!1J~r 1 ,r !#

1g1@J~r ,r 2!1J~r 2 ,r !#%3D
3K expH iqz S g1h(r 2)1g2h(r 1)

g11g2
D J L

H0

, ~2.13!

where the subscriptH0 represents the canonical avera
whenc50. A similar process leads to
8-3
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K expH 6 iqz S g2,1

g11g2
D [h(r 1)2h(r 2)] J L

5 K expH 6 iqz S g2,1

g11g2
D [h(r 1)2h(r 2)] J L

H0

.

~2.14!

Thus, the correlation functions in Eqs.~2.4a! and ~2.4b!
are real, and the correlation function in Eq.~2.4c! is com-
plex. Substituting these functions into Eq.~2.1!, one can see
that the scattering from the two individual interfaces is n
affected by the asymmetry of the interaction potential;
the interference effect, due to the cross-correlation funct
depends on both the quadratic and cubic terms of the Ta
expansion of the potential.

III. RESULTS

Using the definition in Eq.~2.8! to calculate the integra
tion in Eq. ~2.13!, we have

K expH iqz S g1h(r 2)1g2h(r 1)

g11g2
D J L

5$12 iqz
3@F01F~r 12r 2!#%

3 K expH iqz S g1h(r 2)1g2h(r 1)

g11g2
D J L

H0

, ~3.1!

where

F05
bc

~g11g2!3

g1
31g2

3

~2p!4~2ab!3E
2`

` E
2`

`

d2pd2k

3
1

~p21t2!~k21t2!@~p1k!21t2#
, ~3.2!

F~r !5
bc

~g11g2!3

3~g11g2!g1g2

~2p!4~2ab!3 E
2`

` E
2`

`

d2pd2k

3
ei (p1k)r1e2 i (p1k)r

2~p21t2!~k21t2!@~p1k!21t2#
, ~3.3!

wheret25b/a. Substituting Eqs.~2.14! and ~3.1! into Eq.
~2.4!, and referring to our previous calculations for the ca
wherec50 @14#, we have

^exp$ iqz[ j1(r )2j1(0)]%&

5e2s1
2qz

2
expH qz

2 S kBT

2p(g11g2) D
3[K0(dr )1(g2 /g1)K0(tr )] J , ~3.4a!
06160
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^exp$ iqz[ j2(r )2j2(0)]%&

5e2s2
2qz

2
expH qz

2 S kBT

2p(g11g2) D
3[K0(dr )1(g1 /g2)K0(tr )] J , ~3.4b!

^exp$ iqz[ j1(r )2j2(0)]%&

5expH 2 S s1
21s2

2

2 Dqz
2J expH qz

2 S kBT

2p(g11g2) D
3[K0(dr )2K0(tr )] J
3@12 iqz

3F02 iqz
3F~r !#, ~3.4c!

wheres1 ands2 are the interfacial widths of the two inter
faces, andK0 is the modified Bessel function of order zer
Here, the long wavelength cutoffd is introduced to represen
the effects of gravitation and/or the lateral film size@18,24#.
As can be seen from Eq.~2.1!, the x-ray scattering is the
Fourier transform of the correlation functions. Ifc50, one
gets exactly the same results as in our previous work@14#.
However, if cÞ0 the cross-correlation function is comple
suggesting that the interference fringes are not perio
Namely, there are extra contributions to the phase of
interference terms in Eq.~2.1!. The Fourier transform ofF0
is a Diracd function, i.e.,

FF05
bc

~g11g2!3

g1
31g2

3

4t2~2ab!3E
0

1E
0

1

du dv

3
1

12v1vu~12u!
d2~qi!, ~3.5!

which leads to a phase shift for both specular and diffu
scattering, proportional toqz

3 but independent ofqi . The
Fourier transform ofF(r ) is

FIG. 3. Phase shiftw for specular reflectivity whenqi50
~dashed line!, and for longitudinal diffuse scattering whenqi56
31023 nm21 ~dot-dashed line!. The solid line is the difference
between the two curves, which represents the relative phase
between the reflectivity and the diffuse scattering.
8-4
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FF~r !5
bc

~g11g2!3

3~g11g2!g1g2

4p~2ab!3

3
1

qi
21t2E

0

1 da

a~12a!qi
21t2 , ~3.6!

which, when convoluted with the Fourier transform of t
first part on the right-hand side of Eq.~3.4c!, leads to an
additional phase shift for the diffuse scattering, which d
pends on bothqz andqi .

IV. NUMERICAL CALCULATIONS

The interference term in Eq.~2.1! can be rewritten as
ei (qzl m2w)uF^eiqz[ j1(r )2j2(0)]&u, wherew represents the extr
phase shift mentioned above. The Fourier transfo
F^eiqz[ j1(r )2j2(0)]& is calculated numerically. It is a comple
function whose argument isw. The resulting phase shiftw as
a function ofqz is shown in Fig. 3. To simulate x-ray sca
tering from a thin liquid film on top of a liquid subphase, w
used the set of parameters in Fig. 1. Ifqi50 ~for specular
reflectivity!, w varies cubically withqz , namely,w5w0qz

3 ,
wherew0 is calculated according to Eq.~3.5!. WhenqiÞ0,
w becomesw0qz

31w1(qi ,qz). The relative phase shift be
tween the reflectivity and the diffuse scattering,w1(qi ,qz)
varies almost linearly withqz when qz is small. If s i

2qz
2 is

small, one expects thatw1(qi ,qz) depends linearly onqz
@see Eq.~3.4c!#. The deviation from linearity arises mainl
from the fact that the correlation function forc50 depends
exponentially onqz

2 . The relative phase shift is also a fun
tion of qi . It increases from 0 whenqi50 to a finite value
for qiÞ0. The relative phase shift is a direct consequence
the asymmetric nature of the excess free energy of the in
faceDG( l ) and can provide an experimental signature of
anharmonicity of the Hamiltonian.

The reflectivity and diffuse scattering can be calcula
numerically from Eq.~2.1!. Figure 4~a! shows the compari-
son between the specular reflection whenc50 and whenc
Þ0. A similar result for the reflectivity has been obtained
Presset al. @20,26#, who used a cumulant expansion tec

FIG. 4. ~a! Comparison between the specular reflectivity wh
C50 ~solid curve! and whenC56.7231020 J/m5 ~dashed line!. ~b!
Comparison between the longitudinal diffuse scattering whenC
50 ~solid curve! and whenC56.7231020 J/m5 ~dashed line!, cal-
culated for a variation ofqi with qz , as shown in Fig. 2 withqi
5631023 nm21 at qz52.5 nm21.
06160
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nique to calculate the phase shift. Figure 4~b! shows the
comparison between the longitudinal diffuse scattering wh
c50 and whencÞ0, calculated for a linear variation ofqi
with qz , as shown in Fig. 2 withqi5631023 nm21 at qz
52.5 nm21. In the calculation we assumed that the reso
tion in they direction is coarse and, therefore, we integra
out the dependence on the momentum transfer in the co
sponding directionqy . The additional phase shift is observ
able only at large values ofqi .

One can determine the parameterc by measuring the rela
tive phase shift between oscillations in both the reflectiv
and the longitudinal diffuse scattering. The parameterb can
be determined from the transverse diffuse scattering. Ib
50, the transverse diffuse scattering is simply the sum of
contributions of the conventional capillary waves of the tw
interfaces. IfbÞ0, one sees a deviation from the conve
tional capillary wave scattering. If the scanning range is la
enough, oscillations appear in the diffuse scattering cur
@24#. Figure 5 shows the comparison between the transv
diffuse scattering whenb50 and whenbÞ0. If bÞ0, the
capillary waves on the two interfaces are coupled with
coupling strength proportional tob @14#. Once the two coef-
ficients of the Taylor expansion of the interfacial potent
are determined, the interfacial potential itself can be de
mined by simple algebra@14#.

V. CONCLUDING REMARKS

Recent x-ray scattering experiments have measured
resonant diffuse scattering that results from the coupling
capillary waves between two nearby interfaces of thin liqu
films @14,24#. These measurements have been interprete
terms of a quadratic expansion near the minimum of
interfacial free energy~the quadratic term has coefficientb).
However, the shape of this minimum is not strictly harmon
and higher-order terms are expected to be present.

Methods of functional integration and perturbation theo
allowed us to evaluate the effect of a small cubic term in
interfacial free energy. This term leads to a complex cro
correlation function with aqz-dependent variation of the
modulation period of the Kiessig fringes. Thisqz dependence
can be a result of physics other than the cubic term in
interfacial free energy. For example, asymmetry in the tim

FIG. 5. Comparison between the transverse scattering wheB
50 ~solid curve! and whenB51.6631011 J/m4 ~dashed lines!. The
curves run throughqz51.5 nm21. The wavelength used in the ca
culation is 0.825 nm. The interfacial tensions are chosen to beg1

540 mN/m andg2555 mN/m. T5300 K.
8-5
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averaged density profile across each individual interface m
lead to a phase shift in the reflectivity or diffuse scatter
@27#. However, our calculation further predicts a phase s
difference between the Kiessig fringes in both the reflectiv
and the longitudinal diffuse scattering@i.e., the term
w1(qi ,qz)#. This phase shift difference cannot be explain
by an asymmetric density profile, and suggests that x-
scattering can be used to probe the presence of a cubic
in the interfacial free energy. The predicted effects are sm
and measurements at large wave vector transfers are req
-
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in order to observe them. Experimental work is in progress
test the theory.
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