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X-ray scattering of thin liquid films: Beyond the harmonic approximation
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We calculate the x-ray scattering from coupled capillary fluctuations of thin liquid films, taking into account
an asymmetric interfacial interaction potential. Harmonic expansion of the potential around its minimum
produces the well-known Kiessig fringes in both specular reflectivity and longitudinal diffuse scattering. The
addition of a cubic term to the expansion, representing the asymmetry, legdsiépendent changes of the
modulation period of the Kiessig fringes. The cubic term produces a relative phase shift between the interfer-
ence fringes of the specular reflectivity and the off-specular longitudinal diffuse scattering. It is suggested that
these effects may be used to estimate, via x-ray scattering, the interfacial potential of thin liquid films.
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[. INTRODUCTION tion of thin films on top of solid surfacd42,13, and of thin
liquid films on top of liquid subphasd44].

Thin liquid films are of interest for practical, as well as  Numerous x-ray scattering measurements have demon-
theoretical, reasons. They are very important in many techstrated the suitability of capillary wave theory to describe
nological and biological processes such as flotation, tertiarfluctuations of liquid interfaces and their interactions
oil recovery, biological cell interaction and fusion, spreading[13—17. For example, for a complete wetting layer on a
of fluids in coating, and other similar processes involvingsolid surface, the thermal fluctuations on the surface are con-
moving contact lines, selective etching, and forming and profined by the substrate via a long-range interaction. By care-
tecting chips and microsensors in the microelectronics indugfully measuring the confinement as a function of thickness,
try, among other$1]. The thermodynamics of the films is one can estimate the Hamaker constant of the syfieh
determined by the interfacial interactiof]. A model for ~We recently used x-ray scattering and interfacial tension
the free-energyF (per unit areaof a film of thicknesd is  measurements to study the interfacial potential in thin liquid
F(l)=vy1t v2+AG(l), wherey; (j=1,2) are the interfacial films on top of a liquid subphadgei4]. In the present work
tensions of the two interfacial boundaries of the f[lBl. For ~ we calculate, via functional integrals, the x-ray scattering
largel, AG(l) tends toward zero. The interfacial potential or from coupled capillary fluctuations of thin liquid films, tak-
excess interfacial free energyG(l) can often be approxi- ing into account the asymmetric feature of the profile of the
mated as consisting of a short-range force and a long-ranggterfacial interaction potential. It is shown that the interfer-
van der Waals interaction, written §4,5] ence terms of the Kiessig fringes of both the specular reflec-
tivity and the longitudinal diffuse scattering atg depen-
dent. We demonstrate that there is a relative phase shift
between the interference fringes of the specular reflectivity
and the off-specular longitudinal diffuse scattering. This may
whereS, is the amplitude of the short-range interactigris provide a_useful experime_ntal signa_ture for_ determini_ng the
an effective Hamaker constaffig. 1). The first term in Eq. asymmetric shape of the interfacial interaction potential.
(1.1) models a short-range interaction with decay length The mean thickness,,, of a partial wetting layer is kept
[6], and the second term is the van der Waals interactio§onstant by the disjoining pressure, which acts as the restor-
between two planar interfaces, separated by a distaroe

AG(1)=S,e "~ A12712, (1.1)

some cases it is necessary to add a higher-order term propor- 5
tional tol 2 to the van der Waals interactidi]. Different < 4
approaches have been used to study the interfacial potential. = ;
The disjoining pressurd]=dAG/Jl, can be measured as a g 1
function of thickness of the filmg2,8—10. This is practical oo
for free-standing liquid films and for films confined between < ;

two solid surfaces. Ellipsometry, contact angle, and adsorp- R S R
tion measurements have been used to study the wetting of
thin liquid films on both solid and liquid substraté®r a

review, seq11]). X-ray studies have measured the interac-

Thickness (nm)

FIG. 1. An example of the interfacial potential calculated for
S,=18.8<10°2 Jin?, A=8.0x10" % J, andA=0.295 nm. For
this potential, one can calculate the coupling paramBterl.66
*Email address: mingli@aphy.iphy.ac.cn X 10' J/nf, the phase shift paramet€r=6.72x 10?° J/n?, and the
"Email address: schloss@uic.edu film thicknessl ,=4.08 nm.
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q, film thicknessl,,, namely, by cos{l). If g;#0, one mea-
a A sures diffuse scattering from the interfacial fluctuations of
thin films. This can be realized in several wagee Fig. 2
(i) Longitudinal diffuse scattering measured either by scan-
ning #; and §, simultaneously while keeping = 6.+ A6 (as
a b q,/ shown in Fig. 2, or by scanningy, with a constant offset in
qy- If the capillary wave fluctuations of the two interfaces
FIG. 2. (a) Geometry of x-ray scattering from a thin filp) ~ are correlated, one measures interference fringes as a func-
Three scanning modes described in the text. Thick vertical linetion of g, similar to that in the specular reflectivityii)
specular reflectivity. Dashed lines: longitudinal diffuse scattering.Transverse diffuse scattering measured by scanéirg 6,
Solid curve: transverse diffuse scattering. alone while keeping, or 6; constani{experimentally, this is
convenient, though not exactly transverse to the specular re-
ing force to thermal fluctuations. The first derivative of flectivity). The shape of the transverse diffuse scattering in-
AG(l) vanishes at this thickness. The interplay between théensity is determined by the spectra of the two interfacial
short- and long-range interactions creates a strong dynamiceépillary waves, as well as by cross-correlations in the fluc-
coupling between the capillary waves on the two interfacestuations between the two interfaces of the film.
The second derivative &G(1) measures the strength of this
coupling. If one expands the potential to second order, the B. The correlation functions

correlation functions of the capiliary waves can be easily The correlation functions are determined by an analysis of
calculated by Gaussian functional integratjdd,18. In this . L : y an analysis
the capillary-wave Hamiltonian. In this model, the interfacial

approximation, the shape of the potential near its minimum .=~ : .
) . . . width is the result of capillary-wave roughening of a sharp
is presumably symmetric. However, the real interaction PO terface. The range i space of our breviously reported
tential is expected to be asymmetric. By expandi@(l) to X ge 1q sp b y rep

third order, we shall show that the asymmetry leads to aexperlment does not justify the use of more complicated

g,-dependent variation of the modulation period of the Kies_(rjnoglels O.Tlthe mterface@{},l?_l_. Here, we mo?lclfy t;‘e _stanf—
sig fringes. ard capillary-wave Hamiltonian to account for the interfa-

cial interaction14]. A Taylor expansion about the minimum
I, of the excess interfacial free enerdyG(l) (see Fig. 1
yields AG(l)~—A+3B(l—1,)2—:C(I—1,)® (note that

A. X-ray scattering of thin liquid films dAG/9l =0 at the minimum Adding the energy of thermal
fluctuations to the free energy, one has the Hamiltonian of
he system per unit area,

II. THEORY

Figure 2 sketches the x-ray scattering geometry from
thin liquid film. The scattering function, which is propor-

tional to the observed intensity at poirg(q,) in reciprocal 1
space, can be expressed[29,20) Htota|=A—f d?r{yi[1+3(VED2]+ ya[ 1+ 5(VE)?]
0
BOT [ 2p o gindé - 6O g Fb(E— &) c(é1- €)% 22
S(qH,qZ): 2 Hz_f d r<e|qZ[§J(r) f](o)]>e|qw 1 2 1 2 ’ .
i=12 Y,

whereb=B/2, c=C/6, A, is the interfacial area, ang, (i
=1,2) is the interfacial tension of interfaceHere, only the
local interaction of the interfaces has been taken into account
_ (the Derjaguin approximatiof22,23). It is a good approxi-
+c.cle'dl", (2.)  mation wheng; <1/, [23], which is practically satisfied in
our reported x-ray experimefii4]. Also, we have ignored
whereAp; is the difference in electron density across inter-the effect of gravitation, which can be accounted for by in-

facej; &;(r) is the local interfacial height of the sharp inter- troducing a long wavelength cutof.8,24). Substitutingz
face above the mean interfacial plgne is the displacement  — ¢ _ & "and 7= y,&,+ 7,&,, EQ. (2.2) is rewritten as

between two points on the interfacds; -) represents the

canonical average; and c.c. refers to the complex conjugate. 1 o, ) ) ) 3

In the literature, it is generally assumed that the fluctuations HtotaI:A_f dr{a’ (V) +a(Vy)“+by°—cy’,

satisfy a Gaussian distributiofi9]. Thus, the correlation ° (2.3

functions(described beloware all real. We will show in the

next section that this corresponds to the assumption that theherea’=1/(2y,+2y,) anda= y,vy,/(2y,+27,). Since

potential in Eq.(1.1) is parabolic near its minimum. If one ¢§; is the local height or fluctuation of interfageabove the

goes a step further to take into account the cubic term, thenean position of interfacg # is the difference in the fluc-

cross-correlation function is complex. tuations of the two interfaces. If the local thickness of the
When q;=0, one measures the reflectivity of the thin film remains constant throughout the film, thgr=0. Now

films. This is realized by scanning the incident angleand  the Hamiltonian consists of two parts that are independent of

the exit angled, simultaneously while keeping, = 6, [21]. each other. Therefore, the correlation functions take the

The period of the interference fringes is determined by thdorms

n AL;QAEJ d2r[ im( izl é2(n)— E2(0)]y
z
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(expli,[&1(r) — &1(ra)1D) and satisfies [d?vZE(r,v)K(v,w)=8*(r—w). Note that
JEJ=[d?rd?wJ(r)E(r,w)J(w). Also,
[ Uty o)
—\ TR T, (1) + yan(ry) .
<exp|iqz<w’ CAREY 1)]>=e02(3)|3_0, 2.9
. Y2 Y1t ¥2
><<exp[|qz - )[n(rl)—n(rz)]]>,
Y1T7Y2 .
with the operator
(2.439
expliaL£(1) — (1 )] 5— 14z d )
o - Aralh © Y1t 72 yz53(r1)+7153("2)' (210
:<exp[iq (g(rl)—g(rz))]>
Ity The integrand in Eq(2.7) is
. Y1
><<exp[ —1q; 71+72[7;(r1)—77(r2)])]>, (6—(3)381/2JEJ=3E(F,r)e(1/2)JEJ(%EJ+%JE)
(2.4b

+el2IE 1=y 17E)3, (2.11

(explig [£1(ry) —&x(ra)]})
[ Lr) = (rp) where the convention&€J=[d?WE (r,w)J(w) and JZ
N\ P\ T 5 = [d®wJ(w)E(w,r) have been used. The first term leads to

an increase in the film thickness af =3c¢Z(0,0)/4, simi-
><<exp[ iq (7277(M)+717l(f2)) ]> lar to the thermal expansion of a crystal that results from
) :

Yit+ ¥2 anharmonic interactions. In the present case, the absolute
value of the film thickness is not a direct experimental sig-
(2.40 o :
nature for the presence of anharmonic interactions because

The first parts on the right-hand sides of E(&4) are real other aspects of the interaction can modify the thickness. For
; . n moc
functions and will be considered in the next section. To cal-€xample, adding a term such 4d“r3cZ(0,0)n(r) to the

culate the second parts on the right-hand sides of E. Hamiltonian would result in the same effect. Here, we focus
we consider the Hamiltonian our attention on the second term in Eg.11), which leads to

an experimental signature of the anharmonic term. Applying

o .
H:f d2r{a(V n)2+bnP—cp, 2.5 the operatoe™ to this term, we have

o

N

eO(1EJ+33E)%eW2=E)|

and denote it asl; whenc=0. The technique of functional
integration, as used in field theory, allows us to calculate the O3(LEJ+1IE)?
correlation functions in Eq92.4) whenc is small and the _ 2=y v
termcy® is treated perturbatively. Following Zinn-Justin, we 6

eOe(1/2)JEJ|J:O.

J=0

consider the Gaussian functional integi25b| (212
2.3 _
Z(J):J [dp]efeld e (Wamkntin, (26 combining this with Eqs(2.7) and(2.9), we have

where the kernel K(r,w)=(—2aB8V?+2bg)5%(r —w), F)+ r
with B=1kgT, 7K 7= fd2r (r)K(r,w)p(w)d?w, andd7 <exp‘i Z<W7( 2)+7277( 1))]>
= [d?rJ(r) 5(r). Using the property of a functional deriva- Y1tz
tive (6/8J)e’7= ne’”, we have ig38c

T Byt 7,0 )3f d?r{y[E(r,r)+E(ry,r)]
Z(J):eﬁcfdzr((S/&J)3f [dn]ef(llz)”K”H” 1 2

1+ jdz o
,BC r5—J

whereE (r,w) is the inverse kernel that takes the fof&5]

3 +71[E(r'r2)+5(r21r)]}3)

><<exp(iqz(7177(r2)+7277(r1))]> 1 (213
"

Y1t y2
0

e(l/Z)JEJ' (27)

» d2p  ePrw

E(",W):f 5 , (2.8) where the subscripH, represents the canonical average
~»(27)° 2aBp?+2bp whenc=0. A similar process leads to
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exp) i | 2t )[ (r) = 7(r)] 1 /
*1q; I /ALY /A ] A0.8- .
- /
=<exp{riqz el [n(fl)—n(rz)]]> 0 '
Y1t 72 Hy 2 044
o )
(2.14 g 021
9_4 4
0.0
Thus, the correlation functions in Eq&.49 and (2.4b 0 1 2 3 4 5 6
are real, and the correlation function in Eg.40 is com- Q, (1/nm)

plex. Substituting these functions into Eg.1), one can see
that the scattering from the two individual interfaces is not FIG. 3. Phase shifty for specular reflectivity wherg =0
affected by the asymmetry of the interaction potential; but(dashed ling and for longitudinal diffuse scattering whep=6

the interference effect, due to the cross-correlation functionx 1072 nm™* (dot-dashed line The solid line is the difference
depends on both the quadratic and cubic terms of the Tayldyetween the two curves, which represents the relative phase shift

expansion of the potential.

IIl. RESULTS

Using the definition in Eq(2.8) to calculate the integra-

tion in Eq.(2.13, we have

[ yan(ra) +y2m(ry)
&M 19 Y1t 72

={1-ig[ Do+ D(r;—1)]}

><<expl'iqz 717l(r2)+7277(r1))}> @D
H

Y1ty
0

where

d2pdk

o J —ow

B ity (*
RCR P <2w>4<2aﬂ>3f .

1

X2+ D+ D(prK7+ 2] 3.2
_ Bc BMmtyadviva (T (C .
(D(r)_ (71"‘72)3 (277)4(23.B)3 Jiw 7ocd pd k
ei(p+k)f+e—i(p+k)r
(3.3

><2(p2+ 2)(K2+ ) [(p+k)2+ 2]

where 72=b/a. Substituting Eqs(2.14 and (3.1) into Eq.

(2.4), and referring to our previous calculations for the case Bc

wherec=0 [14], we have

(expliq [ £1(r) — £1(0)1})

— 7(riq2 2 kBT
-¢ P % 2m(y1+72)

><[Ko(5f)+(72/71)Ko(Tf)]], (3.43

between the reflectivity and the diffuse scattering.

(exp{ig [ £5(r) — £>(0)1})

—oq? 9 kgT
= z P
© P 9212 m(y1+ v2)

X[Ko(5r)+(71/7’2)Ko(Tr)]], (3.4b

(expig [ £:1(r) —£>(0)]})

B 4 o2+ o2 2] p{z( ksT
- 2 bz ©XP 92 2m(y1+72)
><[Ko(5r>—Ko<rr>]}
X[1-iqi®o—igq;®(r)], (3.49

whereo; and o, are the interfacial widths of the two inter-
faces, andK is the modified Bessel function of order zero.
Here, the long wavelength cutaffis introduced to represent
the effects of gravitation and/or the lateral film s[463,24].

As can be seen from Ed2.1), the x-ray scattering is the
Fourier transform of the correlation functions.d&0, one
gets exactly the same results as in our previous VoK.
However, ifc#0 the cross-correlation function is complex,
suggesting that the interference fringes are not periodic.
Namely, there are extra contributions to the phase of the
interference terms in Eq2.1). The Fourier transform ob,

is a Diracé function, i.e.,

- Yit7s flfldud
(nty2)?4r(2aB)Jo Jo g

Fdg

T routi-w 0 W 39

which leads to a phase shift for both specular and diffuse

scattering, proportional thg but independent ofy;. The
Fourier transform ofb(r) is
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q, (1/nm) q, (1/nm) FIG. 5. Comparison between the transverse scattering \Bhen
=0 (solid curvé and wherB=1.66x 10'* J/nt* (dashed lines The
FIG. 4. (a) Comparison between the specular reflectivity whencurves run througlg,= 1.5 nm *. The wavelength used in the cal-
C=0 (solid curve and whenC=6.72x 10?° J/n? (dashed ling (b)  culation is 0.825 nm. The interfacial tensions are chosen tg;be
Comparison between the longitudinal diffuse scattering wBen =40 mN/m andy,=55 mN/m.T=300 K.
=0 (solid curve and whenC=6.72x 10?° J/n? (dashed ling cal-

culated for a variation ofyy with q;, as shown in Fig. 2 Wity pigue to calculate the phase shift. Figuré)4shows the
=6x107"nm~ atg,=2.5 nm -, comparison between the longitudinal diffuse scattering when
c=0 and wherc#0, calculated for a linear variation ofj

FD(r)= Bc  3(yity2)riva with q,, as shown in Fig. 2 witly=6x10"% nm™*! atq,
(y1+72)°  4m(2apB) =2.5 nn L. In the calculation we assumed that the resolu-
tion in they direction is coarse and, therefore, we integrated
> 1 fl da (3.6) out the dependence on the momentum transfer in the corre-
qﬁ—i— 7)o a(l—a)qur 7’ ' sponding directiorg, . The additional phase shift is observ-

able only at large values dfj .
which, when convoluted with the Fourier transform of the ~One can determine the parametdsy measuring the rela-
first part on the right-hand side of E¢B.40, leads to an tive phase shift between oscillations in both the reflectivity

additional phase shift for the diffuse scattering, which de-and the longitudinal diffuse scattering. The paraméteen
pends on botly, andq;. be determined from the transverse diffuse scatterind If

=0, the transverse diffuse scattering is simply the sum of the
contributions of the conventional capillary waves of the two
IV NUMERICAL CALCULATIONS interfaces. I1fb#0, one sees a deviation from the conven-
The interference term in E¢2.1) can be rewritten as tional capillary wave scattering. If the scanning range is large
e (% m=¢)| F(eldz61(N~&0)| "where o represents the extra enough, oscillations appear in the diffuse scattering curves
phase shift mentioned above. The Fourier transforrr{?4]- Figure 5 shows the comparison between the transverse
F(e4&0-&0O)y is calculated numerically. It is a complex diffuse scattering wheb=0 and whenb#0. If b+0, the
function whose argument is. The resulting phase shigt as ~ c@pillary waves on the two interfaces are coupled with a
a function ofq, is shown in Fig. 3. To simulate x-ray scat- C0UPling strength proportional #[14]. Once the two coef-

tering from a thin liquid film on top of a liquid subphase, we ficients of the Taylor expansion of the interfacial potential
used the set of parameters in Fig. 1gJf=0 (for specular are determined, the interfacial potential itself can be deter-

reflectivity), ¢ varies cubically withg,, namely,o= (poqf, mined by simple algebrgl4].
where ¢, is calculated according to E¢3.5). Whenq#0,
@ becomeScpoqur #1(0,9,). The relative phase shift be-
tween the reflectivity and the diffuse scattering,(q ,q,)
varies almost linearly withy, wheng, is small. If o7q? is Recent x-ray scattering experiments have measured the
small, one expects thap,(q,q,) depends linearly o,  resonant diffuse scattering that results from the coupling of
[see Eq.(3.40]. The deviation from linearity arises mainly capillary waves between two nearby interfaces of thin liquid
from the fact that the correlation function fo=0 depends films [14,24). These measurements have been interpreted in
exponentially orqﬁ. The relative phase shift is also a func- terms of a quadratic expansion near the minimum of the
tion of g . It increases from 0 wheq;=0 to a finite value interfacial free energythe quadratic term has coefficieny.
for g;#0. The relative phase shift is a direct consequence oHowever, the shape of this minimum is not strictly harmonic,
the asymmetric nature of the excess free energy of the inteend higher-order terms are expected to be present.
faceAG(l) and can provide an experimental signature of the Methods of functional integration and perturbation theory
anharmonicity of the Hamiltonian. allowed us to evaluate the effect of a small cubic term in the
The reflectivity and diffuse scattering can be calculatednterfacial free energy. This term leads to a complex cross-
numerically from Eq.(2.1). Figure 4a) shows the compari- correlation function with ag,-dependent variation of the
son between the specular reflection wieen0 and whenc ~ modulation period of the Kiessig fringes. Thjs dependence
#0. A similar result for the reflectivity has been obtained bycan be a result of physics other than the cubic term in the
Presset al. [20,26], who used a cumulant expansion tech-interfacial free energy. For example, asymmetry in the time-

V. CONCLUDING REMARKS
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averaged density profile across each individual interface main order to observe them. Experimental work is in progress to
lead to a phase shift in the reflectivity or diffuse scatteringtest the theory.

[27]. However, our calculation further predicts a phase shift
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